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The problem of dynamicat reconstruction of the variable input of a non-linear dynamical system, given the results of inaccurate 
observations of its phase trajectory, is considered. An algorithm for solving this problem is outlined, based on the method of 
control with a model. The algorithm is stable with respect to information noise and computation errors. 0 2001 Elsevier Science 
Ltd. All rights reserved. 

1. INTRODUCTION. STATEMENT OF THE PROBLEM 

Consider a dynamical system described by a non-linear differential equation 

j(t) = X(y(r))+ B,u(th t E [O, Tl, ~(0) = ~0; Y E Rq (1.1) 

where B1 is a q x n matrix andf, is a q x q matrix-valued function satisfying a Lipschitz condition. The 
trajectory y(r) of the system depends on a time-varying input u(t) (whose role is generally played by a 
control). Both the input and the trajectory are not given in advance. All that is known is that u(t) is a 
square-summable function, that is, 

4.)~ f&O. Tl; R”) 0.2) 

During the motion a certain signal characterizing the phase state of the system is observed. Namely, 
at discrete and sufficiently frequent instants of time Zi E [0, 7’1 the quantities 

x(r;) = Cy(Zi) E RN 

are observed with an error. The results of the measurements are vectors 5; E RN such that 

where C is a q x iV matrix and the quantity h characterizes the accuracy of the measurements. It is 
required to construct an algorithm which is both dynamical and stable for the approximate reconstruction 
of the input. By “dynamical” we mean that the current values of the approximation to the input are 
produced in real time, while “stable” means that the approximation may be made as accurate as desired 
if the observation is sufficiently accurate. 

In other words, the object of this paper is to construct an algorithm for the approximate retrieval 
(or, as is often said [l, 21, reconstruction) of the input-to calculate a certain control uh(.) = <I?(.), vh(.)> 
such that the function vh(.) plays the role of a kind of “estimate” for the approximation of u(.). We 
intend, first, to reconstruct, up to an arbitrary instant of time t E [0, T], the entire prehistory of the 
input U(Z), 0 G z G t, using information that also pertains only to the prehistory of the process 
(measurements cf corresponding to times ‘Si < t). Second, the process of reconstructing the input 
U(T), z E [Zi, Ti+l] will be realized only after the control Q(T) has been computed in the previous time 
interval, that is, for z E [0, z]. In so doing, we will also use the new information on the trajectory - the 
vector cf. 

The problem just formulated belongs to the class of inverse problems of dynamical estimation of 
unknown characteristics from the results of measurements. Such problems have been investigated (see, 
e.g., [3-61). A dynamical algorithm was proposed in [7] to reconstruct the input u(.), given a closed 
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bounded set P C R” with the property 

u(t) E P for almost all t E [0, T]. (1.3) 

The algorithm is based on the method of positional control with a model, which is known from the 
theory of guaranteed control [8], combined will one of the main tools of the theory of ill-posed problems 
[9] -the smoothing functional method (Tikhonov’s method). Later, the algorithm of [7] was developed 
for different classes of systems, described by (a) ordinary differential equations [l, lo], (b) equations 
with delay [ll], and (c) parabolic and hyperbolic equations [2, 12-141. In all the publications just cited, 
condition (1.3) was crucial. 

In what follows, this algorithm will be modified in such a way as to permit reconstruction of an 
unbounded control - namely, a control for which it is known a priori that it satisfies condition (1.2). 
Incidentally, another method has been proposed [15,16] for reconstructing unbounded controls (based 
on the so-called residue method [9]). 

2. THE RECONSTRUCTION ALGORITHM 

Before proceeding to describe the reconstruction algorithm, we will introduce a condition that will be 
assumed to hold throughout what follows. 

Condition 1. A Lipschitzian functionf(z): RN + RN exists such that 

VI(Y) =f(Cy) 

for any y E R4. 
To solve our problem, following the technique described previously in [l, 71, we choose a family of 

partitions 

A,, = l.r,,;)~~“=h,, r/,0 = 0. r,,,m,, = T, rh,;+] = t,,,; +6(h) 

of the interval [0, T] with diameters 6(h), and a function a(h) (the regularizer). The functions 
6(h) E (0, 1) and a(h) E (0, 1) are chosen in such a way as to satisfy the following conditions 

&h)+O, a(h)+O, - 
h+6(h) j. h2 

- 
’ 6(h) 

+O as h-0 
a(h) 

(2-l) 

We then introduce an auxiliary control system (model) 

w(t) = ~(5ih)+ Bv h(t)+ Vh(t), t E 6i =[Zi, Ti+*) (2.2) 

with initial condition w(O) = & where B = CB,. 
Before the algorithm begins to run, we fix the quantity h and partition Ah = {~~}~a. The run of the 

algorithm is divided into m - 1 steps of the same type. At the i-th step, performed in the time interval 
& = [rj, zi+J, Zi = rh,i, the following operations are performed. First, at time zi, vectors V” and vf are 
computed by the formulae 

(2.3) 

where c = const > 0 and the prime denotes transposition. Then the following controls are applied at 
the input of the model 

uh(t)=u,h and d’(t)=vF, tEai (2.4) 

Under the action of these two controls, the model (2.2) is brought from the state W(ri) to the state w(zi+i). 
The algorithm halts its run at time T. 

We have the following 
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Theorem. Suppose conditions (2.1) are satisfied. Then 

uh(.)+u,(.) in b([O, T]; R”) as h+O 

where u.(-) = u*(.; x(-)) is an element of the set U(X(.)) of minimal Lz([O, T]; R”)-norm and U(X(-)) is 
the set of all controls u(.) E Lz([O, T]; R”) compatible with the output A(.). 

Lemma 1. The set U(X(.)) is convex ant closed in the space Lz([O, T]; R”). 
By virtue of this lemma, the element u*(.; x(.)) is uniquely defined. 
The proof of the theorem follows a standard procedure (see, e.g., [l, 7, 121) and is based on 

Lemma 2, which will be presented below. The proof of the lemma makes essential use of the Lipschitz 
property of a functionf: 

If(x)-f(Y)lS Llx-Yl 

which implies the following estimate fort E [rii, zi+J 

lf(xW)-f(5,h)l~k,,Q, k. =LmaxIl, IilL2co J, Q=h+6”’ (2.5) 

It should also be noted that the proof that the algorithm converges is based on the stabilization procedure 
for a Lyapunov-type functional 

u(t)= I whO)-N) I2 + aj [Iv %)I* -I k(s) l*lds 
0 

(2.6) 

where wh(.) = w(.; $, I?(.)) is the phase trajectory of model (2.2). 

Lemma 2. Let 

c > fib*, 4bc+2c2+;+;cb3+$r (2.7) 

(b = IllI is the norm of the matrix B). Then one can find (explicitly) constants da and di such 
that 

IXi-Wi12~do(h+S+a), Xi=X(Zi)r Wi=Wh(Zi) 
(2.8) 

i IrJq*)1* liTa i IU*(T)12 dr+d,y 
0 0 

proof. Consider the quantity 

E(t) = ; 1 x(r)- Wh(t) 12 

For almost all t E Si = [pi, Ti+l), we have 

E(I)=(Xi-Wi + j (fi(.t)+Bi(T)-VV)]m, f’(l)+B’(r)-Vih) 

li 

Integrating the right- and left-hand sides of this equality, we see that fort E [Tit Ti+l), 

where 

E(r)=ei+ i M/(r)+vi(r)+vf(r)- j (Xj-Wi* Vf)dT 

j=O ti 

(2.9) 
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Ej =~l*i-Wi 1’. h+(r)= i p(T)& 
I 

ti 

P~2’(~)=(xi-wi* f’(f)), pj+(l)=(j f(T)& f’(t)) 
li 

p;“(r) = -( 5 f’V)dt. v”). p;5’(r)= -av;, f’(f)) 
7; 

~16’(r)=-~v4, Bi(I)). Clj”(r)= j (Xi -Wi. B’(l)~ 

It is obvious that 

In addition, we have 

It follows from (2.10) that 

From (2.5), in turn, we obtain an estimate 

Mi’ d k,&iQ =z 2 ** -&i+k.a*(h*+S). r~Si. Q=h+S’ 
4 a* 

It is not difficult to find a constant k1 such that 

Mi” c &,S2 

Again using relations (2.10) and (2.5), we obtain 

s3 s3 
d ko”tihQ+(k;)*-+-e.< 

63 

2a 2a3 
e~+k2b(h2+6+hd$ t-203 ’ 

Mi” s bzQQi 63 a%+& 6(h*+ti+h6%) 
2a3 ’ * 

After some algebraic manipulations, we obtain 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 
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In addition 

huh.!-& s lb4h2 + s* 
a’ 2 gEi 

Then 

~/(~i+l)~‘r({f-wi. 
228 142 6* B’(T))c)r+bhUil+b h 

zi 

a+26 h +sei 

It is obvious that 

-wi, B’(z))&+bhU,, +b* *+&. 

*i 
2a ’ 

The following inequalities follow from (2.10), (2.5) and the inequalities :S 1,6 d 1 

We then have 

“~(,)c2te,~{,%,+Uiljz 

sE~.+k (sQcQ+U.)) 
2a3 ’ 4 

t IES. I 

“~,,,.,2~Ui,+~~~~~~4~~i+Ib’h2+2b’U.2 

s2 63E.+lc&& Q-C-$&i +C2a3 t z 

We introduce the quantity 

pi =2&i +a1 (IVh(7)12-IUt(T)12)~ 

0 

Combining relations (2.11)-(2.20), we obtain 

pi+, s d,SUi, +d2(h+SK)UiI +ds(l +a* +6a)h* +d46* + 

+ds(a2+h2+6~+~i+2~ij1~5:-Wi, Bi(r))m+a~ij’~lv11*-lU.(O12)hr+ 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 
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In addition 

Inequalities (2.8) and (2.9) now follow from (2.7), (2.21) and (2.22). 
The results of [l] and Lemma 2 imply the following lemma. 

(2.22) 

Lemma 3. Let u,(.) = u.(.; x(.)) be a function of bounded variation. Then the rate of convergence 
of the algorithm satisfies the estimate 

h+6 
Iu h(WJ~)l&O,T)~ Cl - 

a 
+c,(a+6+h# 

where cl and c2 are constants which can be determined in explicit form. 
Thus, if we put 6 = 6(h) s h, a(h) = h*h , we have the following estimate for the rate of convergence 

of the algorithm 
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